conc_soil_mixing.Rd
Compute nuclide concentration in a vertically-mixed steady-state soil, using the approach of Foster et al. (2015)
conc_soil_mixing(h, E, rhos, rhob, p, L, S, fqz = 1)
soil thickness (cm)
erosion rate (m/Ma)
soil density (g/cm3)
bedrock density (g/cm3)
production and decay parameters for the nuclide (4 elements vector)
p[1] unscaled spallation production rate (at/g/a)
p[2] unscaled stopped muons production rate (at/g/a)
p[3] unscaled fast muons production rate (at/g/a)
p[4] decay constant (1/a)
Attenuation length (3 elements vector in g/cm2)
L[1] neutrons
L[2] stopped muons
L[3] fast muons
scaling factors (2 elements vector)
S[1] scaling factor for spallation
S[2] scaling factor for muons
quartz enrichment factor (default 1)
Nuclide concentration in soil (at/g)
#' data("prm") # production and decay data
p = prm
data("Lambda") # attenuation length data
L = Lambda
altitude = 1000 # site elevation in m
latitude = 20 # site latitude in degrees
P = atm_pressure(alt=altitude,model="stone2000") # atmospheric pressure at site
S = scaling_st(P,latitude) # Stone 2000 scaling parameters
rhob = 2.65 # bedrock density (g/cm3)
rhos = rhob/2 # soil density (g/cm3)
E = 10^seq(log10(0.1),log10(100),length.out = 100) # denudaton rate (m/Ma)
plot(NA,xlim=range(E),ylim=c(0.02,6),log="xy",
xlab="Denudation rate (m/Ma)",ylab="Concentration (10^6 at/g)")
h = 100 # soil depth (cm)
C = conc_soil_mixing(h,E,rhos,rhob,p[,1],L,S)
lines(E,C/1e6)
h = 200 # soil depth (cm)
C = conc_soil_mixing(h,E,rhos,rhob,p[,1],L,S)
lines(E,C/1e6,col="red")
h = 1000 # soil depth (cm)
C = conc_soil_mixing(h,E,rhos,rhob,p[,1],L,S)
lines(E,C/1e6,col="green")
legend("topright",c("1 m","2 m","10 m"),lty=1,col=c("black","red","green"),title="Mixing depth")